Activin-like signaling activates Notch signaling during mesodermal induction.

نویسندگان

  • Takanori Abe
  • Miho Furue
  • Yasufumi Myoishi
  • Tetsuji Okamoto
  • Akiko Kondow
  • Makoto Asashima
چکیده

Both activin-like signaling and Notch signaling play fundamental roles during early development. Activin-like signaling is involved in mesodermal induction and can induce a broad range of mesodermal genes and tissues from prospective ectodermal cells (animal caps). On the other hand, Notch signaling plays important roles when multipotent precursor cells achieve a specific cell fate. However, the relationship between these two signal pathways is not well understood. Here, we show that activin A induces Delta-1, Delta-2 and Notch expression and then activates Notch signaling in animal caps. Also, in vivo, ectopic activin-like signaling induced the ectopic expression of Delta-1 and Delta-2, whereas inhibition of activin-like signaling abolished the expression of Delta-1 and Delta-2. Furthermore, we show that MyoD, which is myogenic gene induced by activin A, can induce Delta-1 expression. However, MyoD had no effect on Notch expression, and inhibited Delta-2 expression. These results indicated that activin A induces Delta-1, Delta-2 and Notch by different cascades. We conclude that Notch signaling is activated when activin-like signaling induces various tissues from homogenous undifferentiated cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A

Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P.,...

متن کامل

Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.

Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad...

متن کامل

Mesoderm induction by activin requires FGF-mediated intracellular signals.

We have examined the role of FGF signaling during activin-mediated mesoderm induction in Xenopus. Using dominant inhibitory mutants of FGF signal transducers to disrupt the FGF-signaling pathway at the plasma membrane or in the cytosol prevents animal cap blastomeres from expressing several mesodermal markers in response to exogenous activin. Dominant inhibitory mutants of the FGF receptor, c-r...

متن کامل

The Delta intracellular domain mediates TGF-β/Activin signaling through binding to Smads and has an important bi-directional function in the Notch–Delta signaling pathway

Delta is a major transmembrane ligand for Notch receptor that mediates numerous cell fate decisions. The Notch signaling pathway has long been thought to be mono-directional, because ligands for Notch were generally believed to be unable to transmit signals into the cells expressing them. However, we showed here that Notch also supplies signals to neighboring mouse neural stem cells (NSCs). To ...

متن کامل

Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes

During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/β-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate choices in vitro. V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2004